کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1396320 1501183 2010 14 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Computational structure–activity relationship analysis of small-molecule agonists for human formyl peptide receptors
موضوعات مرتبط
مهندسی و علوم پایه شیمی شیمی آلی
پیش نمایش صفحه اول مقاله
Computational structure–activity relationship analysis of small-molecule agonists for human formyl peptide receptors
چکیده انگلیسی

N-Formyl peptide receptors (FPRs) are important in host defense. Because of the potential for FPRs as therapeutic targets, recent efforts have focused on identification of non-peptide agonists for two FPR subtypes, FPR1 and FPR2. Given that a number of specific small-molecule agonists have recently been identified, we hypothesized that computational structure–activity relationship (SAR) analysis of these molecules could provide new information regarding molecular features required for activity. We used a training set of 71 compounds, including 10 FPR1-specific agonists, 36 FPR2-specific agonists, and 25 non-active analogs. A sequence of (1) one-way analysis of variance selection, (2) cluster analysis, (3) linear discriminant analysis, and (4) classification tree analysis led to the derivation of SAR rules with high (95.8%) accuracy for correct classification of compounds. These SAR rules revealed key features distinguishing FPR1 versus FPR2 agonists. To verify predictive ability, we evaluated a test set of 17 additional FPR agonists, and found that the majority of these agonists (>94%) were classified correctly as agonists. This study represents the first successful application of classification tree methodology based on atom pairs to SAR analysis of FPR agonists. Importantly, these SAR rules represent a relatively simple classification approach for virtual screening of FPR1/FPR2 agonists.

Figure optionsDownload as PowerPoint slide

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: European Journal of Medicinal Chemistry - Volume 45, Issue 11, November 2010, Pages 5406–5419
نویسندگان
, , ,