کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1396907 | 1501207 | 2008 | 11 صفحه PDF | دانلود رایگان |

Explorations into modeling human oral bioavailability started with a whole dataset of 772 drug compounds. First, training set and test set were chosen based on Kohonen's self-organizing Neural Network (KohNN). Then, a quantitative model of the whole dataset was built using multiple linear regression (MLR) analysis. This model had limited predictability emphasizing that a variety of pharmacokinetic factors influence human oral bioavailability. In order to explore whether better models can be built when the compounds share some ADME properties, four subsets were chosen from the whole dataset to build quantitative models and better models were obtained by MLR analysis. These studies show that, indeed, good models for predicting human oral bioavailability can be obtained from datasets sharing certain pharmacokinetic properties.
Figure optionsDownload as PowerPoint slide
Journal: European Journal of Medicinal Chemistry - Volume 43, Issue 11, November 2008, Pages 2442–2452