کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1442785 1509448 2010 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Zn0.6Cu0.4Cr0.5Fe1.46Sm0.04O4 ferrite and its nanocomposites with polyaniline and polypyrrole: Preparation and electromagnetic properties
موضوعات مرتبط
مهندسی و علوم پایه مهندسی مواد بیومتریال
پیش نمایش صفحه اول مقاله
Zn0.6Cu0.4Cr0.5Fe1.46Sm0.04O4 ferrite and its nanocomposites with polyaniline and polypyrrole: Preparation and electromagnetic properties
چکیده انگلیسی

The nanosized Zn0.6Cu0.4Cr0.5Fe1.46Sm0.04O4 (ZCCFS0.04O) ferrite doped with Sm was prepared by a rheological phase reaction method. These nanoparticles were further used as templates for the fabrication of polyaniline-linked ZCCFS0.04O and polypyrrole-linked ZCCFS0.04O nanocomposites via in situ polymerization method. The structures, morphology and electromagnetic property of ferrite powders and nanocomposites were characterized by X-ray powder diffractometer (XRD), transmission electron microscope (TEM), four-point probe resistivity instrument (SDY-4) and vibrating sample magnetometer (VSM). The electronic and magnetic properties of the nanocomposites are tailored by controlling the ferrite content. The pure polyaniline (PANI) and polypyrrole (PPy) films with thickness of 2 mm show a maximum reflection loss of −20.93 dB and −19.68 dB at 16 GHz and an available bandwidth (frequency difference between points where the absorption is less than −8 dB) of 5.9 GHz and 6.2 GHz, respectively. When relative content of the ZCCFS0.04O in PANI/ZCCFS0.04O and PPy/ZCCFS0.04O composites with respect to aniline (pyrrole) monomer is approximately 20 wt%, the maximum reflection loss of −22.46 and −20.90 dB appear at approximately 14.07 and 14.05 GHz, and available bandwidth is broadened to 11.15 and 11.30 GHz, respectively. The results show that both of PANI/ZCCFS0.04O and PPy/ZCCFS0.04O composites can be used as advancing microwave absorption and shielding materials due to their favorable microwave absorption properties.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Synthetic Metals - Volume 160, Issues 1–2, January 2010, Pages 28–34
نویسندگان
, , , ,