کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1466702 | 990071 | 2011 | 11 صفحه PDF | دانلود رایگان |

Sustainable biocomposites based on thermoplastic starch copolymers (Mater-Bi KE03B1) and biofibres (cotton, hemp and kenaf) were prepared and characterised in terms of their thermo-mechanical and morphological properties. Biocomposites exhibit improved thermal stability and mechanical properties in comparison with the Mater-Bi KE. Biofibres act as suitable thermal stabilizers for the Mater-Bi KE, by increasing the maximum decomposition temperature and the Ea associated to the thermal decomposition process. Biofibre addition into the Mater-Bi KE results in higher storage modulus and in a reduction of the free-volume-parameter associated to the Mater-Bi KE glass transition. The influence of different biofibres on the thermo-mechanical properties of the biocomposites has been discussed. Hemp and kenaf enhance the thermal stability and reduce the free volume-parameter of Mater-Bi KE more significantly than cotton fibres, although the latter exhibits the highest mechanical performance. These differences may be explained by the improved interaction of lignocellulosic fibres with the Mater-Bi KE, due to the presence of hemicellulose and lignin in their formulation.
Journal: Composites Part A: Applied Science and Manufacturing - Volume 42, Issue 1, January 2011, Pages 30–40