کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1467542 990107 2008 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Oxygen permeability analysis of microfibril reinforced composites from PE/PET blends
موضوعات مرتبط
مهندسی و علوم پایه مهندسی مواد سرامیک و کامپوزیت
پیش نمایش صفحه اول مقاله
Oxygen permeability analysis of microfibril reinforced composites from PE/PET blends
چکیده انگلیسی

Polymers, their blends and composites are the most widely used types of barrier materials in the world today. This study uses an experimental design technique to investigate the oxygen permeability of a new type of microfibril reinforced polymer–polymer composite (MFC). It is based on blends of polyethylene (PE) and poly(ethylene terephthalate) (PET) in the ratio of 70/30 (wt%) to create composites without sophisticated processing techniques or expensive coatings, but with oxygen barrier properties superior to those of neat PE. Microfibril reinforced films of 150–200 μm thickness were produced using a variety of manufacturing conditions, cooling conditions and fibre orientations. All films have been shown to possess superior oxygen barrier properties compared to the plain PE films, with the best allowing just over one quarter of the oxygen permeation that was observed through standard PE. Scanning electron microscopy of these films revealed significant differences in microstructure and reinforcement morphology of the films made using different manufacturing parameters. It has been noted that the films allowed to cool slowly, while they remained under pressure in the press decrease permeability significantly, in part due to increases in crystallinity. Statistical analysis has evaluated the impact of each manufacturing parameter on permeability. Generally, manufacturing and cooling conditions appear to have greater influence on barrier properties than the fibril orientation. Many of the MFC films also had tensile strength and modulus well in excess of that of neat PE, with the best film having triple the modulus and nearly double the strength of the unreinforced matrix polymer.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Composites Part A: Applied Science and Manufacturing - Volume 39, Issue 6, June 2008, Pages 940–949
نویسندگان
, , ,