کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1474291 | 991084 | 2014 | 10 صفحه PDF | دانلود رایگان |
The influence of various dopants (500 ppm MgO and Y2O3; 250 ppm ZrO2) on sintering of fine-grained alumina ceramics was evaluated by high-temperature dilatometry. The apparent activation energy of sintering was estimated with the help of Master Sintering Curve and a model proposed by Wang and Raj. The densification kinetics was controlled by at least two mechanisms operating at low (higher activation energy) and high (lower activation energy) densities. Good agreement between the activation energies calculated with both models was observed for low as well as for high densities. The lowest value of activation energy exhibited undoped alumina; the addition of MgO resulted in slight increase of the activation energy. Y2O3 and ZrO2 significantly inhibited the densification, which was reflected in the higher sintering activation energies. The low activation energies in the final sintering step indicates the importance of proper choice of sintering temperature, namely in the two-step sintering process.
Journal: Journal of the European Ceramic Society - Volume 34, Issue 16, December 2014, Pages 4363–4372