کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1475854 | 991132 | 2013 | 11 صفحه PDF | دانلود رایگان |
In some industrial applications, the need to improve the thermal shock resistance of refractories by optimisation of their microstructural design is of major importance. Refractories with enhanced thermal shock resistance usually present a rather low resistance to crack initiation but high resistance to crack propagation (rising R-curves), as well as a mechanical behaviour deviating from pure linear elastic fracture mechanics (LEFM), often qualified as nonlinear. The present work aimed at studying the influence of thermal micro-damage within the microstructure released during the cooling process on the nonlinearity of the mechanical behaviour in tension. The two-phase composites considered were magnesia-spinel refractories with different spinel inclusions content allowing to modulate the micro-damage level. Two different destructive mechanical tests, namely tensile and wedge splitting tests, were performed and their results were compared. The influence of thermal damage on different relevant mechanical parameters was investigated, and a quantitative correlation analysis between these parameters was proposed.
Journal: Journal of the European Ceramic Society - Volume 33, Issue 5, May 2013, Pages 913–923