کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1477006 | 991169 | 2009 | 7 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Modelling the tap density of inorganic powders using neural networks
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی مواد
سرامیک و کامپوزیت
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
In the present study, the tap relative density of five inorganic powders is modelled using neural networks. These powders are similar in shape but have different true density. A large number of mixings are prepared from three classes (coarse, medium, and fine particles) and modelled. The inputs of the neural networks are the 23 weight percentage intervals of the grain size distribution (38–2000 μm). The estimated values are compared to those obtained by factorial plans. It is shown that very accurate results are obtained with a unique relatively small neural network. Finally, the neural network is used to determine the mixing leading to the highest tap relative density.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of the European Ceramic Society - Volume 29, Issue 15, 1 December 2009, Pages 3105–3111
Journal: Journal of the European Ceramic Society - Volume 29, Issue 15, 1 December 2009, Pages 3105–3111
نویسندگان
Vincent Moreschi, Sylvain Lalot, Christian Courtois, Anne Leriche,