کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1478130 | 991210 | 2007 | 7 صفحه PDF | دانلود رایگان |

The first high-temperature mechanical spectroscopy experiments on high-purity polycrystalline MgO reveal a monotonically frequency- and temperature-dependent dissipation ‘background’—without any evidence of the superimposed dissipation peak observed in a previous study of a specimen of lower-purity [Webb, S. and Jackson, I. Phys. Chem. Min., 2003 30, 157]. The dissipation and associated relaxation of the shear modulus observed in both studies are well described in an internally consistent manner by a novel Burgers-type model based on a creep function incorporating suitable distributions of anelastic relaxation times. The contrasting patterns for the two materials reinforce an emerging generalisation concerning high-temperature viscoelastic behaviour, whereby the presence of a secondary intergranular phase of relatively low viscosity, and the associated rounding of grain edges, is apparently required to allow elastically accommodated grain-boundary sliding. The absence, in sufficiently pure polycrystalline materials, of a dissipation peak attributable to elastically accommodated grain-boundary sliding is in conflict with classical micromechanical models for grain-boundary sliding, which are therefore being revisited.
Journal: Journal of the European Ceramic Society - Volume 27, Issue 16, 2007, Pages 4697–4703