کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1482330 991562 2011 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Deep-UV Raman spectroscopic analysis of structure and dissolution rates of silica-rich sodium borosilicate glasses
موضوعات مرتبط
مهندسی و علوم پایه مهندسی مواد سرامیک و کامپوزیت
پیش نمایش صفحه اول مقاله
Deep-UV Raman spectroscopic analysis of structure and dissolution rates of silica-rich sodium borosilicate glasses
چکیده انگلیسی

As part of ongoing studies to evaluate relationships between structure and rates of dissolution of silicate glasses in aqueous media, sodium borosilicate glasses of composition Na2O·xB2O3·(3 − x)SiO2, with x ≤ 1 (Na2O/B2O3 ratio ≥ 1), were analyzed using deep-UV Raman spectroscopy. Results were quantified in terms of the fraction of SiO4 tetrahedra with one non-bridging oxygen (Q3) and then correlated with Na2O and B2O3 content. The Q3 fraction was found to increase with increasing Na2O content, in agreement with studies on related glasses, and, as long as the value of x was not too high, this contributed to higher rates of dissolution in single pass flow-through testing. In contrast, dissolution rates were less strongly determined by the Q3 fraction when the value of x was near unity, and appeared to grow larger upon further reduction of the Q3 fraction. Results were interpreted to indicate the increasingly important role of network hydrolysis in the glass dissolution mechanism as the BO4 tetrahedron replaces the Q3 unit as the charge-compensating structure for Na+ ions. Finally, the use of deep-UV Raman spectroscopy was found to be advantageous in studying finely powdered glasses in cases where visible Raman spectroscopy suffered from weak Raman scattering and fluorescence interference.

Research Highlights
► Deep-UV Raman spectra of powdered glasses exhibited enhanced signal-to-noise.
► Raman bands for Q3 varied as expected with Na2O content in silica-rich glasses.
► Dissolution rate correlated with Q3 fraction but also depended on Na2O/ B2O3 ratio.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Non-Crystalline Solids - Volume 357, Issue 10, 1 May 2011, Pages 2170–2177
نویسندگان
, , , ,