کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1484623 | 991639 | 2008 | 7 صفحه PDF | دانلود رایگان |

The transmission of ArF laser pulses in virgin fused silica (type III) samples changes during N = 106 pulses at an incoming fluence Hin = 5 mJ cm−2 pulse−1. The related absorption is determined by the pulse energy absorption coefficient α(N, Hin) using a modified Beer’s law, yielding initial values αini around 0.005 cm−1, a maximum αmax ⩽ 0.02 cm−1 at N = 103–104 and stationary values 0.0045 cm−1 ⩽ αend ⩽ 0.0094 cm−1 after N ≈ 6 × 105 pulses. The development α(N, Hin = const.) is simulated by a rate equation model assuming a pulse number dependent E′ center density E′(N). E′(N) is determined by a dynamic equilibrium between E′ center generation and annealing. Generation occurs photolytically from the precursors ODC II and unstable SiH structures upon single photon absorption and from strained SiO bonds via two-photon excitation. Annealing in the dark periods between the laser pulses is dominated by the reaction of E′ with H2 present in the SiO2 network. The development α(N, Hin = const.) is observed for the very first sample irradiation only (virgin state). The values αend are not accessible by simple spectrophotometer measurements.
Journal: Journal of Non-Crystalline Solids - Volume 354, Issue 1, 1 January 2008, Pages 25–31