کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1485000 1510530 2007 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Cation diffusion in soda-lime-silicate glass melts
موضوعات مرتبط
مهندسی و علوم پایه مهندسی مواد سرامیک و کامپوزیت
پیش نمایش صفحه اول مقاله
Cation diffusion in soda-lime-silicate glass melts
چکیده انگلیسی

Cation diffusion was experimentally investigated in soda-lime-silicate glass melts (composition in mol%: 74SiO2–16Na2O–10CaO) at temperatures from 1000 to 1200 °C using the diffusion couple technique. One half of each diffusion couple was doped with 11 trace elements (500 ppm by weight of Rb, Cs, Sr, Zn, Cd, Nd, Eu, In, Sn, Ge and 1000 ppm by weight of Fe). Experiments were performed in an internally heated gas pressure vessel at a confining pressure of 100 MPa to avoid convective fluxes in the diffusion samples. The distribution of major elements was analyzed by electron microprobe. IR spectroscopy was used to quantify concentrations of dissolved water in the run products. Trace element diffusion profiles were measured simultaneously employing synchrotron X-ray fluorescence microanalysis. In all analyzed glasses the highest diffusion coefficients were observed for Rb whereas Nd was always the slowest element, e.g. at 1000 °C the diffusivity decreases from (1.51 ± 0.35) × 10−11 m2/s for Rb to (1.29 ± 0.34) × 10−13 m2/s for Nd. The diffusivity of Nd is close to the chemical diffusivity of network former calculated from viscosity data using the Eyring relationship. Surprisingly, the rare earth elements Nd (3+) and Eu (mixed 2+, 3+) diffuse more slowly than the tetravalent Ge. Activation energies for diffusion increase from (132.1 ± 1.5) kJ/mol for Rb to (205 ± 16) kJ/mol for Eu. Based on the diffusion data for Eu, Sr and Nd we estimated that Eu2+/Eutotal ratios in soda-lime-silicate glass melts are below 0.04 both at reducing and oxidizing conditions.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Non-Crystalline Solids - Volume 353, Issues 52–54, 15 December 2007, Pages 4743–4752
نویسندگان
, ,