کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1485022 | 1510529 | 2008 | 6 صفحه PDF | دانلود رایگان |

The medium-range order of phospho-silicate bioactive glasses (with compositions (2 − p)SiO2 · 1Na2O · 1.1CaO · pP2O5, in which p = 0.10, 0.20, 0.26) has been studied by means of a combined-experimental (MAS-NMR, chemical durability measurements) and computational (classical molecular dynamics (MD)) approach. The structural model obtained by MD is showed to be helpful in the interpretation of the NMR spectra. A small amount of Si–O–P link units has been detected in glasses with low P2O5-content, but at high P2O5 concentration the percentage of Si–O–P bridges becomes important. However, Qn distributions show that the HP5 (p = 0.20) glass structure is less polymerized with respect to the H (p = 0.10) and HP6.5 (p = 0.26) glasses. These results provide useful explanation of the behavior of these glasses in water and highlight the influence of the medium-range order on a very important property of potential bioactive glasses such as the chemical durability.
Journal: Journal of Non-Crystalline Solids - Volume 354, Issues 2–9, 15 January 2008, Pages 84–89