کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1485854 | 1510546 | 2006 | 8 صفحه PDF | دانلود رایگان |

Studies of binary chalcogenide alloys have established that the onset of network rigidity is generally delayed by a network self-organization resulting in an intermediate phase with significant deviations from mean-field chemical bonding. In GexSe1−x, the onset of local chemical bonding rigidity occurs for a mean-field coordination, rc = 2.4 at x = 0.2, but percolation of stress resulting in network rigidity is delayed until rc = 2.52. This paper demonstrates that low levels of electrically active defects in gate dielectrics for (i) thin film transistors (TFTs) in liquid crystal displays (LCDs), and (ii) aggressively-scaled metal- oxide-semiconductor field effect transistors (MOSFETs) are derived from similar network self-organizations that occur for a narrow range of dielectric compositions. The dielectrics of this article are non-crystalline (nc-) SixNyHz alloys in which a chemical self-organization occurs during deposition at 300 °C, and nc-(SiO2)x(Si3N4)y(ZrO2)z alloys in which it occurs during post-deposition annealing at ∼900 °C. For each of these alloys, the values of x, y and z, are approximately 0.3, 0.4 and 0.3.
Journal: Journal of Non-Crystalline Solids - Volume 352, Issues 42–49, 15 November 2006, Pages 4509–4516