کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1504268 | 1510982 | 2015 | 7 صفحه PDF | دانلود رایگان |

• Shell-in-shell structured TiO2 hollow microspheres were synthesized.
• The growth mechanism of the unique structure was interpreted.
• Four types of light-trapping structures were designed and optimized.
• Enhanced light scattering ability increase the photoelectric conversion efficiency.
The shell-in-shell structured TiO2 hollow microspheres with enhanced light scattering ability were synthesized via a facile one step hydrothermal process. The diameter of the microsphere is about 1.5 μm, the core of the unique shell-in-shell structure is composed of TiO2 nanoparticles with a diameter of about 15 nm, while the shell is constructed with ∼50 nm TiO2 nanocubes. The hollow space between the outer shell and the inner shell is about 230 nm. The formation mechanism of the unique shell-in-shell structure is interpreted. The design and the optimized application of shell-in-shell structured TiO2 hollow microspheres in the light-trapping perovskite solar cells are also investigated. Owing to the light scattering properties of the shell-in-shell structure of the hollow microsphere, the optimized photoelectrode exhibits an enhanced photoelectric conversion efficiency of 4.29% using perovskite CH3NH3PbI3 as the sensitizer. The shell-in-shell hollow TiO2 microsphere shows a 21.2% increase in conversion efficiency when compared with P25 nanoparticels photoanode. The conversion efficiency enhancement is mainly attributed to the increase of short-current density induced by the light scattering effect.
Figure optionsDownload as PowerPoint slide
Journal: Solid State Sciences - Volume 40, February 2015, Pages 60–66