کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1505911 | 993776 | 2009 | 6 صفحه PDF | دانلود رایگان |

A new binary Mn0.5Fe0.5(H2PO4)2·xH2O powder was synthesized by simple and cost-effective method using phosphoric acid, manganese and iron metals as starting chemicals. The synthesized solid shows the complex thermal transformations and the final decomposition product is a new binary manganese iron cyclo-tetraphosphate, MnFeP4O12. The X-ray diffraction and FTIR results indicate that the synthesized new binary Mn0.5Fe0.5(H2PO4)2·xH2O and the decomposition MnFeP4O12 powders are a pure monoclinic phase with space group P21/n (Z = 2) and C2/c (Z = 4), respectively. The particle morphologies of Mn0.5Fe0.5(H2PO4)2·xH2O and MnFeP4O12 powders appear as the rod-like tetragonal shape and show a high agglomeration of small particles, which are similar to the case of Mn(H2PO4)2·2H2O and Fe2P4O12, respectively. Room temperature magnetization results show a ferromagnetic behavior of the Mn0.5Fe0.5(H2PO4)2·xH2O and MnFeP4O12 powders, having the hysteresis loops in the range of −10,000 Oe < H < +10,000 Oe with the specific magnetization values of 25.63 and 13.14 emu/g at 10 kOe, respectively. The lower magnetizations of Mn0.5Fe0.5(H2PO4)2·xH2O and MnFeP4O12 than those of Fe(H2PO4)2·2H2O and Fe2P4O12 powders indicate the presence of Mn ions in substitution position of Fe ions.
Figure optionsDownload as PowerPoint slide
Journal: Solid State Sciences - Volume 11, Issue 2, February 2009, Pages 485–490