کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1521892 995300 2014 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Thermoelectric properties of Zn doped Cu2SnSe3
موضوعات مرتبط
مهندسی و علوم پایه مهندسی مواد مواد الکترونیکی، نوری و مغناطیسی
پیش نمایش صفحه اول مقاله
Thermoelectric properties of Zn doped Cu2SnSe3
چکیده انگلیسی
Zn doped ternary compounds Cu2ZnxSn1−xSe3 (x = 0, 0.025, 0.05, 0.075) were prepared by solid state synthesis. The undoped compound showed a monoclinic crystal structure as a major phase, while the doped compounds showed a cubic crystal structure confirmed by powder XRD (X-Ray Diffraction). The surface morphology and elemental composition analysis for all the samples were studied by SEM (Scanning Electron Microscopy) and EPMA (Electron Probe Micro Analyzer), respectively. SEM micrographs of the hot pressed samples showed the presence of continuous and homogeneous grains confirming sufficient densification. Elemental composition of all the samples revealed an off-stoichiometry, which was determined by EPMA. Transport properties were measured between 324 K and 773 K. The electrical resistivity decreased up to the samples with Zn content x = 0.05 in Cu2ZnxSn1−xSe3, and slightly increased in the sample Cu2Zn0.075Sn0.925Se3. This behavior is consistent with the changes in the carrier concentration confirmed by room temperature Hall coefficient data. Temperature dependent electrical resistivity of all samples showed heavily doped semiconductor behavior. All the samples exhibit positive Seebeck coefficient (S) and Hall coefficient indicating that the majority of the carriers are holes. A linear increase in Seebeck coefficient with increase in temperature indicates the degenerate semiconductor behavior. The total thermal conductivity of the doped samples increased with a higher amount of doping, due to the increase in the carrier contribution. The total and lattice thermal conductivity of all samples showed 1/T dependence, which points toward the dominance of phonon scattering at high temperatures. The maximum 1/TZT = 0.48 at 773 K was obtained for the sample Cu2SnSe3 due to a low thermal conductivity compared to the doped samples.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Materials Chemistry and Physics - Volume 147, Issue 3, 15 October 2014, Pages 1022-1028
نویسندگان
, , , , , , ,