کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1522725 1511822 2013 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Synthesis of organophosphorus modified nanoparticles and their reinforcements on the fire safety and mechanical properties of polyurea
موضوعات مرتبط
مهندسی و علوم پایه مهندسی مواد مواد الکترونیکی، نوری و مغناطیسی
پیش نمایش صفحه اول مقاله
Synthesis of organophosphorus modified nanoparticles and their reinforcements on the fire safety and mechanical properties of polyurea
چکیده انگلیسی

Novel organophosphorus modified nanoparticles (FRs-nanoparticles) were synthesized by the hydrolysis and condensation of both 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide modified vinyl trimethoxy silane (DOPO-VTS) and 3-triethoxysilylpropylamine. FRs-nanoparticles were incorporated into the polyurea matrix in different ratios via in situ polymerization, resulting in the formation of organic/inorganic nanocomposites. The nanocomposites were characterized by thermogravimetric analysis (TGA), real-time fourier transform infrared spectra (RTIR), microscale combustion calorimeter (MCC) and tensile testing machine. The TGA results revealed that FRs-nanoparticles could slightly catalyze the thermal degradation of the nanocomposites in nitrogen atmosphere, but significantly improve the thermal stability of the nanocomposites in air atmosphere. The T0.5 (50wt.% weight loss) of the nanocomposites was delayed by 32 °C in air atmosphere. Moreover, the char yield increased from 2.3wt.% to 8.9 wt.% at 550 °C when the loadings of FRs-nanoparticles was 10wt.%, indicating the catalyzing charring effect of FRs-nanoparticles. The MCC results revealed that all the nanocomposites exhibited much lower flammability compared with virgin polyurea. Furthermore, the tensile test indicated that the FRs-nanoparticles could also improve the mechanical properties of polyurea.


► Novel organophosphorus modified nanoparticles (FRs-nanoparticles) were synthesized.
► FRs-nanoparticles were incorporated into the polyurea.
► Both the thermal stability and mechanical properties of polyurea were improved.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Materials Chemistry and Physics - Volume 139, Issues 2–3, 15 May 2013, Pages 443–449
نویسندگان
, , , , ,