کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1523565 | 1511830 | 2011 | 8 صفحه PDF | دانلود رایگان |

Silica aerogels and TiO2/silica aerogel composite photocatalysts were synthesized by sol–gel technique at ambient pressure using orthosilioate and tetra-n-butyl titanate as precursors, respectively. The prepared composite photocatalysts were characterized by XRD, TEM, BET surface area, FT-IR and UV–vis absorption spectra. The results showed that the TiO2/silica aerogel composite photocatalysts possess high surface area. The addition of silica aerogels inhibited the grain growth and phase transformation of anatase to rutile during calcination. The TiO2/silica aerogel composite sample calcined at 500 °C with an optimal silica aerogel content of 7 wt.% afforded the highest photocatalytic activity. The photocatalytic degradation of 2-sec-butyl-4,6-dinitrophenol (DNBP) was investigated by using this novel TiO2/silica aerogel composite photocatalyst under solar light irradiation. The effects of irradiation time, pH, catalyst concentration, temperature and initial DNBP concentration were examined as operational parameters. The optimal operational parameters were found as follows: pH as solution pH 4.82, 8 g L−1 catalyst concentration, 20 °C, and 240 min irradiation time. The kinetics of DNBP degradation by TiO2/silica aerogel composite fit well a pseudo-first-order kinetic model. The repeatability of photocatalytic activity was also tested. This study showed the feasible and potential use of TiO2/silica aerogel composite photocatalysts in degradation of toxic organic contaminants.
► The preparation of TiO2/silica aerogel composite photocatalysts is achieved by sol–gel technique at ambient pressure.
► The photocatalytic performances of TiO2/silica aerogel composite photocatalysts are revealed in experiments.
► The repeatability of photocatalytic activity is observed and a plausible mechanism is proposed.
Journal: Materials Chemistry and Physics - Volume 130, Issue 3, 1 November 2011, Pages 1372–1379