کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1525301 1511839 2010 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A surface treatment technique of electrochemical oxidation to simultaneously improve the interfacial bonding strength and the tensile strength of PAN-based carbon fibers
موضوعات مرتبط
مهندسی و علوم پایه مهندسی مواد مواد الکترونیکی، نوری و مغناطیسی
پیش نمایش صفحه اول مقاله
A surface treatment technique of electrochemical oxidation to simultaneously improve the interfacial bonding strength and the tensile strength of PAN-based carbon fibers
چکیده انگلیسی

Electrochemical oxidation surface treatment of polyacrylonitrile-based carbon fibers (CFs) in 0.5 M ammonium oxalate aqueous solution for 94 s with the electric current density being 0.6 mA cm−2 resulted in simultaneous improvements of interfacial bonding strength and tensile strength by ∼8.6% and ∼16.6%, respectively. The improvements were due to the following reasons: (1) besides creating active surface functional groups, the electrochemical oxidation treatment with optimal processing conditions also generated a suitable electrolytic etching capability, which was powerful enough to remove mechanically weak carbonaceous components deposited on the surface of CFs, while was gentle enough not to distinguishably remove structurally ordered sheath region of CFs; (2) the treatment also refined the graphitic crystallites in the sheath region and created additional crystalline impingements/boundaries that could resist to crack growth; and (3) the electrochemical oxidation that preferably started from sharp edges including the tips of micro-cracks mitigated the stress development and propagation. XRD, SEM, Raman, FT-IR, XPS, and an electronic single-filament tensile tester were used to study the structural, morphological, chemical, and mechanical properties of the CFs before and after the treatment. A theoretical model, namely “physical and chemical dual effects through layer-by-layer electrolytic etching”, was proposed to explain the improvements.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Materials Chemistry and Physics - Volume 122, Issues 2–3, 1 August 2010, Pages 548–555
نویسندگان
, , , , , ,