کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1529214 995742 2012 5 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Influence of the contacting scheme in simulations of radial silicon nanorod solar cells
موضوعات مرتبط
مهندسی و علوم پایه مهندسی مواد مواد الکترونیکی، نوری و مغناطیسی
پیش نمایش صفحه اول مقاله
Influence of the contacting scheme in simulations of radial silicon nanorod solar cells
چکیده انگلیسی
Silicon nanorod solar cells were simulated using the Silvaco Technical Computer Aided Design (TCAD) software suite. For reasons of speed optimization the simulations were performed in cylinder coordinates taking advantage of the model's symmetry. Symmetric doping was assumed with a dopant density of 1018 cm−3 in the p-type core and in the n-type shell, and the location of the pn-junction was chosen such that the space charge region was located adjacent to the shell surface. Two contact configurations were explored. In configuration A the cathode contact was wrapped around the semiconductor nanorod, while in configuration B the cathode was assumed just on top of the nanorod. In both cases the anode was located at the bottom of the rod. Cell efficiency was optimized with regard to rod radius and rod length. Optimization was performed in a three-step procedure consisting in radius optimization, length optimization and again radius optimization. A maximum in efficiency with respect to rod length L was visible in configuration A, leading to an optimum value of L = 48 μm. This maximum is explained by the combination of an increase of short-circuit current density Jsc and a decrease of open-circuit voltage Uoc with L. In configuration B, Jsc also increases with L, but Uoc stays rather constant and the maximum in efficiency only appears at very large values of L ≈ 12 mm. We restricted the rod length to L ≤ 100 μm for further optimization, in order to stay in an experimentally feasible range. During the optimization of rod radius R in configuration A the open circuit voltage increased continuously, while short circuit current density stayed rather constant. This leads to an increase in efficiency with R, which only stops at very large radii, where R starts to be comparable with L. In configuration B efficiency is almost independent of R, provided that the radius is large enough to comprise a well-formed space charge region, here only a shallow maximum can be estimated. With the demand of rod lengths being smaller than 100 μm, optimum parameters L = 48 μm, R = 32 μm and L = 96 μm, R = 2 μm were extracted for configuration A and B, respectively.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Materials Science and Engineering: B - Volume 177, Issue 17, 1 October 2012, Pages 1558-1562
نویسندگان
, , ,