کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1530000 995783 2009 5 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Artificial neural network methodology: Application to predict magnetic properties of nanocrystalline alloys
موضوعات مرتبط
مهندسی و علوم پایه مهندسی مواد مواد الکترونیکی، نوری و مغناطیسی
پیش نمایش صفحه اول مقاله
Artificial neural network methodology: Application to predict magnetic properties of nanocrystalline alloys
چکیده انگلیسی

This paper is dedicated to the optimization of magnetic properties of iron based magnetic materials with regard to milling and coating process conditions using artificial neural network methodology. Fe–20 wt.% Ni and Fe–6.5 wt.% Si, alloys were obtained using two high-energy ball milling technologies, namely a planetary ball mill P4 vario ball mill from Fritsch and planetary ball mill from Retch. Further processing of Fe–Si powder allowed the spraying of the feedstock material using high-velocity oxy-fuel (HVOF) process to obtain a relatively dense coating. Input parameters were the disc Ω and vial ω speed rotations for the milling technique, and spray distance and oxygen flow rate in the case of coating process. Two main magnetic parameters are optimized namely the saturation magnetization and the coercivity. Predicted results depict clearly coupled effects of input parameters to vary magnetic parameters. In particular, the increase of saturation magnetization is correlated to the increase of the product Ωω (shock power) and the product of spray parameters. Largest coercivity values are correlated to the increase of the ratio Ω/ω (shock mode process) and the increase of the product of spray parameters.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Materials Science and Engineering: B - Volume 163, Issue 1, 25 June 2009, Pages 17–21
نویسندگان
, , , , ,