کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1549862 | 1513110 | 2014 | 11 صفحه PDF | دانلود رایگان |
• A specularly reflective cavity placed over a solar absorber reduces radiative losses.
• Cavity performance is sensitive to cavity size and cavity-absorber alignment.
• Radiative loss reduction validated with proof of concept experiments.
• Losses from near blackbody absorber reduced by over 75%.
• Receiver efficiency shown to be comparable to idealized wavelength selective absorber.
A principal loss mechanism for solar receivers in solar-thermal systems is radiation from the absorbing surface. This loss can be reduced by using the concept of directional selectivity in which radiation is suppressed at angles larger than the incident angle of the sunlight striking the absorber. Directional selectivity can achieve efficiencies similar to high solar concentration, without the drawbacks associated with large heat fluxes. A specularly reflective hemispherical cavity placed over the absorber can reflect emitted radiation back to the absorber, effectively suppressing emission losses. An aperture in the cavity will still allow sunlight to reach the absorber surface when used with point focus concentrating systems. In this paper the reduction in radiative losses through the use of a hemispherical cavity is predicted using ray tracing simulations, and the effects of cavity size and absorber alignment are investigated. Simulated results are validated with proof of concept experiments that show reductions in radiative losses of more than 75% from a near blackbody absorber surface. The demonstrated cavity system is shown to be capable of achieving receiver efficiencies comparable to idealized spectrally selective absorbers across a wide range of operating temperatures.
Journal: Solar Energy - Volume 108, October 2014, Pages 69–79