کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1550698 998104 2012 15 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Thermal and mechanical properties of nitrate thermal storage salts in the solid-phase
موضوعات مرتبط
مهندسی و علوم پایه مهندسی انرژی انرژی های تجدید پذیر، توسعه پایدار و محیط زیست
پیش نمایش صفحه اول مقاله
Thermal and mechanical properties of nitrate thermal storage salts in the solid-phase
چکیده انگلیسی

Implementation of molten salt compounds as the heat transfer fluid and energy storage medium provides specific benefits to energy collection and conversion. Nitrate salts have been identified as a strong candidate for energy transfer and storage and have been demonstrated for use in these applications over time. As nitrate salts have solidification temperatures above ambient, concern for recovery from salt freezing events has instigated efforts to understand and predict this behavior. Accurate information of salt property behavior in the solid-phase is necessary for understanding recovery from a freeze event as well as for phase change thermal energy storage applications. Thermal and mechanical properties for three representative salts (solar salt, HITEC salt, and a Na–K–Li–Ca nitrate salt; spanning the range of liquidus temperatures from approximately 90–240 °C), have been obtained. These properties include: specific heat, coefficient of thermal expansion, thermal conductivity, latent heat of fusion, compressive strength, tensile strength, Young’s modulus and Poisson’s ratio. Specific heat, thermal conductivity and latent heat of fusion were measured using differential scanning calorimetry. Temperature was not observed to have a significant effect on tensile strength using an indirect tensile test (Brazilian test). Peak stress and Young’s modulus (both from unconfined compressive strength testing) were shown to decrease while Poisson’s ratio increased with increasing temperature.


► Solid-phase thermal and mechanical properties of nitrate thermal storage salts.
► Thermal properties: specific heat, coefficient of thermal expansion, thermal conductivity, and latent heat of fusion.
► Mechanical properties: compressive strength, tensile strength, Young’s modulus and Poisson’s ratio.
► Properties enable thermomechanical modeling and characterization of salt behavior in solid-phase.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Solar Energy - Volume 86, Issue 10, October 2012, Pages 2897–2911
نویسندگان
, , , ,