کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1550802 998108 2012 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Parameter identification for solar cell models using harmony search-based algorithms
موضوعات مرتبط
مهندسی و علوم پایه مهندسی انرژی انرژی های تجدید پذیر، توسعه پایدار و محیط زیست
پیش نمایش صفحه اول مقاله
Parameter identification for solar cell models using harmony search-based algorithms
چکیده انگلیسی

Recently, accurate modeling of current vs. voltage (I–V) characteristics of solar cells has attracted the main focus of various researches. The main drawback in accurate modeling is the lack of information about the precise values of the models parameters, namely, photo-generated current, diode saturation current, series resistance, shunt resistance and diode ideality factor. In order to make a good agreement between experimental data and the models results, parameter identification with the help of an optimization technique is necessary. Because I–V curve of solar cells is extremely non-linear, an excellent optimization technique is required. In this paper, harmony search (HS)-based parameter identification methods are proposed to identify the unknown parameters of the solar cell single and double diode models. Simple concept, easy implementation and high performance are the main reasons of HS popularity to solve complex optimization problems. For this aim, three state-of-the-art HS variants are used to determine the unknown parameters of the models. The effectiveness of the HS variants is investigated with comparative study among different techniques. Simulation results manifest the superiority of the HS-based algorithms over the other studied algorithms in modeling solar cell systems.


► Harmony search variants are proposed to identify the solar cell models parameters.
► The performance of HS-based algorithms is quite promising.
► The results of the HS algorithms outperform those of the other studied algorithms.
► HS is a helpful technique for solar cell parameter identification.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Solar Energy - Volume 86, Issue 11, November 2012, Pages 3241–3249
نویسندگان
, ,