کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1557790 1513757 2014 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
In situ hydrothermal growth of ferric oxides on carbon cloth for low-cost and scalable high-energy-density supercapacitors
ترجمه فارسی عنوان
در محل رشد هیدروترمال از اکسید های فروس بر روی پارچه کربن برای کم هزینه و مقیاس پذیری بالا ابررسانای چگالی بالا؟
موضوعات مرتبط
مهندسی و علوم پایه مهندسی انرژی انرژی (عمومی)
چکیده انگلیسی


• A new kind of high-energy-density symmetric supercapacitor has been designed using 2.0 M Li2SO4 aqueous solution as the electrolyte and carbon cloth (CC) grown with α-Fe2O3 nanoneedles (CC/Fe2O3) as electrode materials.
• The as-constructed supercapacitor has high energy density of 11.0 mWh cm−3 and power density of 1543.7 mW cm−3 using 2.0 M Li2SO4 aqueous solution as electrolyte and carbon cloth/Fe2O3 as electrode material.
• The fabrication of this kind of supercapacitor is cost-effective, easily operational, environmentally friendly, practicable, and scalable.

Nowadays, supercapacitor devices employed in the practical application have been growing rapidly, ranging from consumer electronics and hybrid electric vehicles to industrial electric utilities. However, there are certain disadvantages in the supercapacitors, including low energy density and high production cost, which are still considered to be tremendous challenges in their developments. Herein, a new kind of high-energy-density symmetric supercapacitor, energy density of 11.0 mWh cm−3 and power density of 1543.7 mW cm−3, has been designed using 2.0 M Li2SO4 aqueous solution as the electrolyte and carbon cloth (CC) with α-Fe2O3 nanoneedles grown on (CC/Fe2O3) as electrode materials. Furthermore, the fabrication of this kind of supercapacitor is low-cost, easily operational, environmentally friendly, practicable, and scalable, which indicates this method is feasible to fabricate cost-effective high-energy-density supercapacitors.

Figure optionsDownload as PowerPoint slide

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Nano Energy - Volume 9, October 2014, Pages 345–354
نویسندگان
, , , , ,