کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1562976 | 999601 | 2010 | 6 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Artificial neural network modeling for undercooled liquid region of glass forming alloys
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
سایر رشته های مهندسی
مکانیک محاسباتی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
A computer model based on radial base function artificial neural network (RBFANN) was designed for the simulation and prediction of undercooled liquid region ÎTx of glass forming alloys. The model was trained using data from the published literature as well as own experimental data. The performance of RBFANN model is examined by the predicted and simulated results of the influence of kinds of alloys and elements, large and minor change of element content on the reduced glass transition temperature, and composition dependence of ÎTx for La-Al-Ni ternary alloy system. The results show that the RBFANN model is reliable and adequately. Moreover, a group of new Zr-Al-Ni-Cu bulk metallic glasses is designed by RBFANN model. Their predicted ÎTxs are in agreement with the corresponding experimental values.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computational Materials Science - Volume 48, Issue 1, March 2010, Pages 109-114
Journal: Computational Materials Science - Volume 48, Issue 1, March 2010, Pages 109-114
نویسندگان
An-hui Cai, Xiang Xiong, Yong Liu, Wei-ke An, Jing-ying Tan, Yun Luo,