کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1563335 999607 2008 6 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Numerical simulation for stress/strain distribution and microstructural evolution in 42CrMo steel during hot upsetting process
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مکانیک محاسباتی
پیش نمایش صفحه اول مقاله
Numerical simulation for stress/strain distribution and microstructural evolution in 42CrMo steel during hot upsetting process
چکیده انگلیسی

Based on experimental results, the dynamic recrystallization mathematical models of 42CrMo steel were derived. The effects of strain rates on the strain/stress distribution and microstructural evolution in 42CrMo steel during hot upsetting process were simulated by integrating the thermo-mechanical coupled finite element model. The results show that the deformation of the specimen is inhomogeneous, and the degree of the deformation inhomogeneity decreases with the increase of strain rates. The distribution of the effective stress in the specimen is also inhomogeneous, and the locus of the maximum effective stress changes with the variations of strain rates. The dynamic recrystallization volume fraction decreases with the increase of strain rates. The distribution of the dynamic recrystallization grain is inhomogeneous in the deformed specimen, and the average dynamic recrystallization grain size decreases as the strain rate is increased. A good agreement between the predicted and experimental results confirmed that the derived dynamic recrystallization mathematical models can be successfully incorporated into the finite element model to predict the microstructural evolution in the hot upsetting process for 42CrMo steel.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computational Materials Science - Volume 43, Issue 4, October 2008, Pages 1117–1122
نویسندگان
, , ,