کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1575183 | 1514738 | 2014 | 8 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Improvement of fracture toughness of directionally solidified Nb-silicide in situ composites using artificial neural network
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی مواد
دانش مواد (عمومی)
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
An artificial neural network (ANN) was employed to investigate the fracture toughness of directionally solidified Nb-silicide in situ composites. The microstructures of the composites were quantified with a metallographic statistics method. Both microstructural features and composition of the constituent phases were used as the candidate inputs of the artificial neural network model while the fracture toughness of the composites was employed as the outputs. The effects of different inputs on the fracture toughness were investigated and evaluated by the trained network. When all of the candidate inputs were taken into account, outstanding performance of the neural network was achieved. A new alloy with optimized microstructure and fracture toughness was produced according to the prediction of the model. The fracture toughness of the new alloy reached 19.5 MPa m1/2, which was 25.5% higher than the best inputted alloy (15.5 MPa m1/2).
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Materials Science and Engineering: A - Volume 605, 27 May 2014, Pages 65-72
Journal: Materials Science and Engineering: A - Volume 605, 27 May 2014, Pages 65-72
نویسندگان
Kai Guan, Lina Jia, Xiaojun Chen, Junfei Weng, Fei Ding, Hu Zhang,