کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1577163 | 1514792 | 2012 | 8 صفحه PDF | دانلود رایگان |

In order to reveal the high-velocity deformation mechanisms of 5052 aluminum alloy sheets, this work compares the dynamic plastic deformation behavior and the microstructure evolutions with those of the quasi-static case by scanning electron microscopy (SEM) observations, electron back scattering diffraction (EBSD) analysis, and transmission electron microscopy (TEM) studies. Results show that the dynamic process exhibits a very different macro fracture shape and a much similar micro deformation pattern as compared with the quasi-static case, and under both conditions, the dislocation-slip mechanism works during deformation. For the shock effect of high-velocity deformation, much denser dislocations are generated and the tendency of cross-slip of dislocations increases. The dislocation bands are more narrow and denser than those shown in the quasi-static case, and a much more uniform dislocation configuration is also exhibited after dynamic loadings. In addition, under dynamic conditions, the existing of pre-strain will introduce an accommodated effect on the dynamically induced dislocations, a slight reduction of density combining with a higher movement tendency. The characteristics of multi-slips and homogenization effect of dislocations under dynamic conditions will result in much higher plasticity and strength of materials over the quasi-static ones.
► Dislocation slip mechanism works during both quasi-static and dynamic deformation.
► Dynamic deformation induces denser dislocations and more cross-slip tendency.
► Existed prestrain has an accommodating effect on dislocation generation and motion.
Journal: Materials Science and Engineering: A - Volume 551, 15 August 2012, Pages 280–287