کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
157748 | 456980 | 2010 | 7 صفحه PDF | دانلود رایگان |

Sorbents with different Ni loading supported on silica–alumina (SiAl) and activated carbon (AC) were synthesized and tested for removal of sulfur compounds from a model diesel oil, containing nearly 250 ppmw S as benzothiophene (BT), dibenzothiophene (DBT) and 4,6-dimethyldibenzothiophene (4,6-DMDBT). A state-of-art Commercial Ni-based sorbent and two Norit activated carbons were also tested for comparison. Moreover, the influence on sorbents uptake capacity of the presence of aromatics in amounts representative of real diesel oils was studied. Both commercial and home-made materials performed worse in presence of aromatic compounds. Probably, the latter competed with the refractory sulfur compounds (DBT and 4,6-DMDBT) in the adsorption on active sites. As a first important result of the investigation the sorbents carrying 45% and 30% of Ni on SiAl showed a breakthrough uptake capacity of nearly, respectively, 2 and 2.6 times higher than Commercial sorbent as a consequence of their higher Ni dispersion and surface area. Moreover, activated carbons and the sample with 28%Ni on AC showed an even higher breakthrough uptake capacities. In particular, the deposition of nickel on activated carbon is an innovative approach which takes advantage of the selectivity of Ni towards S-species and the high adsorptive capacity of AC support.
Journal: Chemical Engineering Science - Volume 65, Issue 1, 1 January 2010, Pages 603–609