کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
158262 | 457001 | 2005 | 9 صفحه PDF | دانلود رایگان |

Spherical mesoporous silica materials with controllable surface area and uniform pore size were synthesized via evaporation induced self-assembly (EISA) method in this study. Both well-ordered and less-ordered mesoporous silica particle (MSP) adsorbents were made via adjusting the surfactant/silica precursor molar ratio. And the relationships between the physical characteristics of MSP adsorbents and the acetone adsorption behaviors were examined for the first time. The results indicated that an increase in the specific surface area results in an increase in the acetone adsorption capacity. But if a further increase in the surface area causes a less structured adsorbent then the acetone adsorption capacity could become less even though the specific surface area is of the highest value of 1337m2/g. The acetone adsorption capacity of well-ordered MSP adsorbent is more than twice of that of the commercial ZSM-5 zeolite adsorbent due to its relatively higher surface area and uniform pores. The well-ordered structure of MSP also leads to higher acetone adsorption efficiency and a sharper breakthrough curve due to fast pore diffusion.
Journal: Chemical Engineering Science - Volume 63, Issue 7, April 2008, Pages 1997–2005