کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1628954 | 1006115 | 2010 | 5 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Data-Driven Prediction of Sintering Burn-Through Point Based on Novel Genetic Programming
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی مواد
فلزات و آلیاژها
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
An empirical dynamic model of burn-through point (BTP) in sintering process was developed. The K-means clustering was used to feed distribution according to the cold bed permeability, which was estimated by the superficial gas velocity in the cold stage. For each clustering, a novel genetic programming (NGP) was proposed to construct the empirical model of the waste gas temperature and the bed pressure drop in the sintering stage. The least square method (LSM) and M-estimator were adopted in NGP to improve the ability to compute and resist disturbance. Simulation results show the superiority of the proposed method.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Iron and Steel Research, International - Volume 17, Issue 12, December 2010, Pages 1-5
Journal: Journal of Iron and Steel Research, International - Volume 17, Issue 12, December 2010, Pages 1-5