کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1635572 1516943 2016 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Feasibility of stochastic gradient boosting approach for predicting rockburst damage in burst-prone mines
ترجمه فارسی عنوان
امکان سنجی رویکرد افزایش شیب تصادفی برای پیش بینی آسیب های سنگفرش در معادن قابل انفجار
کلمات کلیدی
منفجر شدن معدن، آسیب روببرست، روش تقویت بار تصادفی
موضوعات مرتبط
مهندسی و علوم پایه مهندسی مواد فلزات و آلیاژها
چکیده انگلیسی

The database of 254 rockburst events was examined for rockburst damage classification using stochastic gradient boosting (SGB) methods. Five potentially relevant indicators including the stress condition factor, the ground support system capacity, the excavation span, the geological structure and the peak particle velocity of rockburst sites were analyzed. The performance of the model was evaluated using a 10 folds cross-validation (CV) procedure with 80% of original data during modeling, and an external testing set (20%) was employed to validate the prediction performance of the SGB model. Two accuracy measures for multi-class problems were employed: classification accuracy rate and Cohen's Kappa. The accuracy analysis together with Kappa for the rockburst damage dataset reveals that the SGB model for the prediction of rockburst damage is acceptable.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Transactions of Nonferrous Metals Society of China - Volume 26, Issue 7, July 2016, Pages 1938–1945
نویسندگان
, , , , ,