کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1637978 | 1516981 | 2013 | 14 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Application of constitutive and neural network models for prediction of high temperature flow behavior of Al/Mg based nanocomposite
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی مواد
فلزات و آلیاژها
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
To predicate the high temperature flow behavior of Al/Mg based nanocomposite, constitutive models such as general flow, Arrhenius hyperbolic, Johnson-Cook(JC) and modified Zerilli-Armstrong (ZA) models, and artificial neural network(ANN) models were developed using stress-strain data collected from hot compression tests carried at different strain rates (0.01-1.0 sâ1) and temperatures (523, 623 and 723 K). The validity of the models developed was tested using statistical parameters such as root mean square error (RMSE), regression coefficient (R2), mean relative error (MRE) and scattered index (Is). A comparison between ANN and different constitutive models shows that the ANN model has a higher accuracy in estimating the flow stress during hot deformation of AA5083/2%TiC nanocomposite.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Transactions of Nonferrous Metals Society of China - Volume 23, Issue 6, June 2013, Pages 1737-1750
Journal: Transactions of Nonferrous Metals Society of China - Volume 23, Issue 6, June 2013, Pages 1737-1750
نویسندگان
V. SENTHILKUMAR, A. BALAJI, D. ARULKIRUBAKARAN,