کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
166013 1423409 2014 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Local Partial Least Squares Based Online Soft Sensing Method for Multi-output Processes with Adaptive Process States Division
ترجمه فارسی عنوان
روش های سنجش نرم افزاری نرم افزاری به صورت جزئی ترین مکانی محلی برای فرآیندهای چند خروجی با کشورهای متشکل از روند سازگاری
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی مهندسی شیمی (عمومی)
چکیده انگلیسی

Local learning based soft sensing methods succeed in coping with time-varying characteristics of processes as well as nonlinearities in industrial plants. In this paper, a local partial least squares based soft sensing method for multi-output processes is proposed to accomplish process states division and local model adaptation, which are two key steps in development of local learning based soft sensors. An adaptive way of partitioning process states without redundancy is proposed based on F-test, where unique local time regions are extracted. Subsequently, a novel anti-over-fitting criterion is proposed for online local model adaptation which simultaneously considers the relationship between process variables and the information in labeled and unlabeled samples. Case study is carried out on two chemical processes and simulation results illustrate the superiorities of the proposed method from several aspects.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Chinese Journal of Chemical Engineering - Volume 22, Issue 7, July 2014, Pages 828–836
نویسندگان
, , ,