کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1679751 | 1518642 | 2016 | 7 صفحه PDF | دانلود رایگان |

Fullerene C70 thin films were deposited by resistive heating on glass substrates and the thickness were approximated to be 150 nm. The effect of energy deposition by 55 MeV Si ions on the optical and structural properties of the prepared thin film samples is investigated. The samples were irradiated with 55 MeV Si ions within fluence range from 1 × 1012 to 3 × 1013 ions/cm2. For optical studies, the pristine and the Si ion irradiated samples are examined by UV–visible absorption spectroscopy and Raman spectroscopy. UV–visible absorption studies reveal that the absorption peaks of irradiated samples decrease with a decrease in the band gap of the thin films. The damage cross-section (σ) and radius of damaged cylindrical zone (r) are determined as ∼0.6 × 10−13 cm2 and ∼1.41 nm, respectively from the Raman spectra. Raman studies also suggest that at higher fluence (up to 3 × 1013 ions/cm2), the damage caused by the SHI results in partial amorphization of fullerene C70 thin film. Modification in the surface properties has been investigated by atomic force microscopy; it has revealed that the roughness decreases and average particle size increases with the increase in fluences.
Journal: Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms - Volume 379, 15 July 2016, Pages 188–194