کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1680458 1518709 2013 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Stopping powers of LiF thin films deposited onto self-supporting Al foils for swift protons
موضوعات مرتبط
مهندسی و علوم پایه مهندسی مواد سطوح، پوشش‌ها و فیلم‌ها
پیش نمایش صفحه اول مقاله
Stopping powers of LiF thin films deposited onto self-supporting Al foils for swift protons
چکیده انگلیسی

The energy losses of ∼(0.273–3.334) MeV protons in LiF thin films deposited by vacuum evaporation onto self-supporting Al foils have been measured using the transmission method. The thicknesses of selected and used LiF/Al target samples were accurately determined via systematic energy loss measurements for alpha particles from a very thin mixed 241Am/239Pu/233U radioactive source. The samples were investigated in detail for their stoichiometry and their impurity contents by backscattering Rutherford spectrometry and nuclear reaction analysis. Then, LiF stopping powers have been determined with overall relative uncertainty of less than 2.7% arising mainly from errors in the determination of target sample thicknesses. These S(E) data are reported and discussed in comparison to previous experimental data sets from the literature and to values calculated by the Sigmund–Schinner binary collision stopping theory both for molecular LiF, and for the LiF compound assuming Bragg–Kleeman’s additivity rule. Our S(E) data show to be in excellent agreement with the latter theory for molecular LiF over the whole proton energy range explored, which supports the use of modified electronic hydrogen wave functions for evaluating atomic shell corrections in the case of low-Z2 target materials. In contrast, they exhibit a slightly increasing deviation from theoretical values derived for the LiF compound with assuming stopping force additivity as the proton energy decreases from E ≈ 400 keV towards lower proton velocities. This deviation in excess relative to experimental data, amounting only up to (at most) ∼2.5%, can be ascribed to strong effects of 2s-state valence electrons of Li atoms within the LiF compound. Besides, the comparison to values calculated by the SRIM-2008 computer code indicates that this program satisfactorily accounts for our S(E) data above E ≈ 1.30 MeV but underestimates them with substantially increasing deviations (up to ∼11%) towards lower proton velocities where the Bragg–Kleeman additivity rule therefore appears to be inapplicable.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms - Volume 308, 1 August 2013, Pages 46–53
نویسندگان
, , ,