کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1680757 1518735 2012 4 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
MeV Si ion beam implantation as an effective patterning tool for the localized formation of porous silicon
موضوعات مرتبط
مهندسی و علوم پایه مهندسی مواد سطوح، پوشش‌ها و فیلم‌ها
پیش نمایش صفحه اول مقاله
MeV Si ion beam implantation as an effective patterning tool for the localized formation of porous silicon
چکیده انگلیسی

Porous silicon (PS), in the form of single layer and multilayer structures, is a low-cost nanomaterial with applications in a wide range of fields. Hence, there is an increasing interest on the fabrication of laterally patterned PS structures. In biophysics for example, PS is a promising material for the development of low cost optical biochips, due to its remarkable biocompatibility and adjustable surface chemistry and optical properties. However, conventional lithography processes have shown to be not suitable for the proper patterning of PS. In this work, implantation of MeV Si ions is proposed as an effective tool for the localized formation of PS in the micrometer range. As previously reported by other groups, irradiation of silicon with H and He keV ions can inhibit the formation of PS. In the case of heavier ions, its higher damage efficiency allows for lower implantation doses to achieve PS growth inhibition, which allows shorter process times, and at the same time provides good lateral resolution below the micrometric range. Besides, the usage of ions of the same elementary nature as the target material avoids inconvenient side effects that may be ascribed to the implanted species. Two dimensional PS patterns with feature size of few micrometers have been successfully fabricated. Fluorescence and scanning electron microscopy reveal the proper transfer of different mask motifs into a PS/silicon patterned structure. Patterns present well defined lateral contrast and flat surface with no significant height variations, mandatory features for the development of PS based biochips. A resistivity increase has been observed on irradiated samples which could explain the inhibition of PS formation. This effect is attributed to dopant deactivation by the ion beam, since backscattering channeling measurements show no significant lattice damage.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms - Volume 282, 1 July 2012, Pages 25–28
نویسندگان
, , , , ,