کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1681844 | 1518731 | 2012 | 6 صفحه PDF | دانلود رایگان |

Electric conductivity variations of undoped hydrogenated amorphous silicon (a-Si:H) semiconductors induced by swift protons are investigated. The results show that the conductivity drastically increases at first and then decreases on further irradiation. The conductivity enhancement is observed only in the low fluence regime and lasts for a prolonged period of time when proton irradiation stops in this fluence regime. On the other hand, the photosensitivity has a minimum value around the conductivity peak. This fact indicates that non-equilibrium carriers do not play a dominant role in the electric conduction in this fluence regime. It is found that the anomalous conductivity enhancement in the low fluence regime is dominated by donor center generation. At higher fluences the conductivity during irradiation is dominated by non-equilibrium carriers as the generated donor centers disappear. It is also found that the RIC in the high fluence regime is proportional to the carrier generation rate. This indicates that the recombination process of non-equilibrium carriers is dominated by indirect recombination via defect levels.
Journal: Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms - Volume 286, 1 September 2012, Pages 29–34