کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1683508 | 1010507 | 2007 | 5 صفحه PDF | دانلود رایگان |

Germanium nanoparticles embedded in SiO2 matrix were prepared by atom beam sputtering on a p-type Si substrate. The as-deposited films were annealed at temperatures of 973 and 1073 K under Ar + H2 atmosphere. The as-deposited and annealed films were characterized by Raman, X-ray diffraction and Fourier transform infrared spectroscopy (FTIR). Rutherford backscattering spectrometry was used to quantify the concentration of Ge in the SiO2 matrix of the composite thin films. The formation of Ge nanoparticles were observed from the enhanced intensity of the Ge mode in the Raman spectra as a function of annealing, the appearance of Ge(3 1 1) peaks in the X-ray diffraction data and the Ge vibrational mode in the FTIR spectra. We have irradiated the films using 100 MeV Au8+ ions with a fluence of 1 × 1013 ions/cm2 and subsequently studied them by Raman and FTIR. The results are compared with the ones obtained by annealing.
Journal: Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms - Volume 264, Issue 2, November 2007, Pages 249–253