کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1683973 1518755 2009 4 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A broad chemical and structural characterization of the damaged region of carbon implanted alumina
موضوعات مرتبط
مهندسی و علوم پایه مهندسی مواد سطوح، پوشش‌ها و فیلم‌ها
پیش نمایش صفحه اول مقاله
A broad chemical and structural characterization of the damaged region of carbon implanted alumina
چکیده انگلیسی
As candidate materials for future thermonuclear fusion reactors, isolating ceramics will be submitted to high energy gamma and neutron radiation fluxes together with an intense particle flux. Amorphization cannot be tolerated in ceramics for fusion applications, due to the associated volume change and the deterioration of mechanical properties. Therefore, a comprehensive study was carried out to examine the effects of carbon beam irradiation on polycrystalline aluminium oxide (Al2O3), a ceramic component of some diagnostic and plasma heating systems. Complementary techniques have allowed a complete chemical and structural surface analysis of the implanted alumina. Implantation with 75 keV, mono-energetic carbon ions at doses of 1 × 1017 and 5 × 1017 ions/cm2 was performed on polished and thermally treated ceramic discs. The alumina targets were kept below 120 °C. The structural modifications induced during ion irradiation were studied by the GXRD and TEM techniques. Under these conditions, alumina is readily amorphized by carbon ions, the thickness of the ion-beam induced disordered area increasing with the ion dose. Matrix elements and ion implanted profiles were followed as a function of depth by using ToF-SIMS, indicating the maximum concentration of implanted ions to be in the deeper half of the amorphous region. Ion distribution and chemical modifications caused in the Al2O3 substrate by carbon irradiation were corroborated with XPS. The amount of oxygen in the vicinity of the implanted alumina surface was reduced, suggesting that this element was selectively sputtered during carbon irradiation. The intensity of those peaks referring to Al-O bonds diminishes, while contributions of reduced aluminium and metal carbides are found at the maximum of the carbon distribution. TEM observations on low temperature thermally annealed specimens indicate partial recovery of the initial crystalline structure.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms - Volume 267, Issues 8–9, 1 May 2009, Pages 1468-1471
نویسندگان
, , , , , ,