کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1684128 1010522 2009 5 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Structure and tribological performance of helium-implanted layer on Ti6Al4V alloy by plasma-based ion implantation
موضوعات مرتبط
مهندسی و علوم پایه مهندسی مواد سطوح، پوشش‌ها و فیلم‌ها
پیش نمایش صفحه اول مقاله
Structure and tribological performance of helium-implanted layer on Ti6Al4V alloy by plasma-based ion implantation
چکیده انگلیسی
The present paper concentrates on tribological performance of Ti6Al4V alloy treated by helium plasma-based ion implantation with a voltage of −30 kV and a dose range of 1, 3, 6 and 9 × 1017 He/cm2. X-ray photoelectron spectroscopy (XPS), Transmission electron microscopy (TEM) and Atomic force microscopy (AFM) were used to characterize composition, structure and surface morphology, respectively. The variation of hardness with indenting depth was measured and tribological performance was evaluated. The uniform cavities with a diameter of several nanometers are formed in the helium-implanted layer on Ti6Al4V alloy. Helium implantation enhances the ingress of O, C and N and produces TiO2, Al2O3, TiC, TiN in the near surface layer on their removal from the vacuum and exposure to normal atmospheric condition. In the near surface layer, the hardness of implanted samples increases remarkably comparing with the untreated sample, and the maximum peak increasing factor is up to 2.9 for the sample implanted with 3 × 1017 He/cm2. A decrease in surface roughness, resulting from the leveling effect of sputtering and re-deposition during implantation, has also been observed. Comparing with the untreated sample, implanted samples have a good wear resistance property. And the maximum increase in wear resistance reaches over seven times that of the untreated one for the sample implanted with 3 × 1017 He/cm2. The wear mechanism of implanted samples is abrasive-dominated.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms - Volume 267, Issue 3, February 2009, Pages 482-486
نویسندگان
, , , ,