کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1685740 | 1010574 | 2008 | 5 صفحه PDF | دانلود رایگان |

The effects of short duration irradiation with low dose rate gamma and beta rays on the input resistance and the output Hall voltage of InSb, GaAs, Si, and Ge semiconductor Hall effect devices were systemically studied. Both gamma and beta irradiation can cause the input resistance of Hall effect devices to increase linearly with increasing irradiation time, in the absence of a magnetic field. When the devices were placed in a magnetic field, the output Hall voltage and input resistance increased nonlinearly with increasing gamma irradiation time. The effects of both gamma and beta irradiation persisted long after the irradiation itself, and without annealing. The effects from irradiation in Hall effect devices can be mainly ascribed to the degradation of the charge carriers’ transport properties caused by radiation-induced defects. The radiation resistance of the Hall effect devices was estimated by considering changes of the input resistance under the same irradiation conditions. The Ge and Si Hall effect devices demonstrated a better radiation resistance than the InSb and GaAs Hall effect devices due to their large displacement threshold energy.
Journal: Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms - Volume 266, Issue 16, August 2008, Pages 3583–3587