کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1686291 | 1518762 | 2006 | 5 صفحه PDF | دانلود رایگان |

In order to understand the formation mechanism of a crystallographic re-structuring in the periphery region of high-burnup nuclear fuel pellets, named as “rim structure”, information on the accumulation process of radiation damage and fission products (FPs), as well as high-density electronic excitation effects by FPs, are needed. In order to separate each of these processes and understand the high-density electronic excitation effects, 70–210 MeV FP ion (Xe10–14+, I7+ and Zr9+) irradiation studies on CeO2, as a simulation of fluorite ceramics of UO2, have been done at a tandem accelerator of JAEA-Tokai and the microstructure changes were determined by transmission electron microscope (TEM). Measurements of the diameter of ion tracks, which are caused by high-density electronic excitation, have clarified that the effective area of electronic excitation by high-energy fission products is around 5–7 nm ϕ and the square of the track diameter tends to follow linear function of the electronic stopping power (Se). Prominent changes are hardly observed in the microstructure up to 400 °C. After overlapping of ion tracks, the elliptical deformation of diffraction spots is observed, but the diffraction spots are maintained at higher fluence. These results indicate that the structure of CeO2 is still crystalline and not amorphous. Under ion tracks overlapping heavily (>1 × 1015 ions/cm2), surface roughness, with characteristic size of the roughness around 1 μm, is observed and similar surface roughness has also been observed in light-water reactor (LWR) fuels.
Journal: Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms - Volume 250, Issues 1–2, September 2006, Pages 254–258