کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1690959 | 1011285 | 2010 | 6 صفحه PDF | دانلود رایگان |

Cyclic plasma oxynitriding and cyclic plasma nitriding catalyzed by rare earth La of AISI 420 martensitic stainless steel were performed and compared with conventional plasma nitriding. The nitrided layers were investigated by means of an optical microscope, microhardness tester, Auger electron spectroscopy (AES), X-ray diffraction (XRD), wear machine, scanning electron microscope (SEM) and energy dispersive spectroscopy (EDS). The results show that the wear resistance of AISI 420 martensitic stainless steel is improved significantly by the two new rapid and deep plasma nitriding techniques. The new techniques increase the surface hardness of the nitrided layers and make the microhardness profiles gentler, which are consistent with the nitrogen concentration depth profiles. Meanwhile, the nitrided effect improves with increasing cycles. It was also found that the optimum phase compositions of nitrided layers with more γ′ phases and less ɛ phases for long-term service conditions can be obtained by the two new techniques, which is in agreement with the microstructure. In addition, traces of Fe3O4 were found in the cyclic plasma oxynitrided sample. Combining the SEM and EDS analysis indicated the existence of La in the nitrided layer of the sample under cyclic plasma nitriding catalyzed by rare earth La.
Journal: Vacuum - Volume 84, Issue 6, 4 February 2010, Pages 870–875