کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1691149 | 1011297 | 2009 | 5 صفحه PDF | دانلود رایگان |

Silicon oxide (SiOx) thin films have been deposited at a substrate temperature of 300 °C by inductively-coupled plasma chemical vapor deposition (ICP-CVD) using N2O/SiH4 plasma. The effect of N2O/SiH4 flow ratios on SiOx film properties and silicon surface passivation were investigated. Initially, the deposition rate increased up to the N2O/SiH4 flow ratio of 2/1, and then decreased with the further increase in N2O/SiH4 flow ratio. Silicon oxide films with refractive indices of 1.47–2.64 and high optical band-gap values (>3.3 eV) were obtained by varying the nitrous oxide to silane gas ratios. The measured density of the interface states for films was found to have minimum value of 4.3 × 1011 eV−1 cm−2. The simultaneous highest τeff and lowest density of interface states indicated that the formation of hydrogen bonds at the SiOx/c-Si interface played an important role in surface passivation of p-type silicon.
Journal: Vacuum - Volume 84, Issue 3, 5 November 2009, Pages 410–414