کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1697408 | 1519254 | 2015 | 9 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
A new statistical approach to automated quality control in manufacturing processes
ترجمه فارسی عنوان
یک رویکرد آماری جدید برای کنترل کیفیت اتوماتیک در فرایندهای تولید
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
تشخیص آنومالی، آمار بیزی، نظارت بر فرآیند، کنترل کیفیت،
موضوعات مرتبط
مهندسی و علوم پایه
سایر رشته های مهندسی
کنترل و سیستم های مهندسی
چکیده انگلیسی
Automated quality control is a key aspect of industrial maintenance. In manufacturing processes, this is often done by monitoring relevant system parameters to detect deviations from normal behavior. Previous approaches define “normalcy” as statistical distributions for a given system parameter, and detect deviations from normal by hypothesis testing. This paper develops an approach to manufacturing quality control using a newly introduced method: Bayesian Posteriors Updated Sequentially and Hierarchically (BPUSH). This approach outperforms previous methods, achieving reliable detection of faulty parts with low computational cost and low false alarm rates (â¼0.1%). Finally, this paper shows that sample size requirements for BPUSH fall well below typical sizes for comparable quality control methods, achieving True Positive Rates (TPR) >99% using as few as n = 25 samples.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Manufacturing Systems - Volume 36, July 2015, Pages 159-167
Journal: Journal of Manufacturing Systems - Volume 36, July 2015, Pages 159-167
نویسندگان
Michael W. Milo, Michael Roan, Bradley Harris,