کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1709271 | 1012846 | 2009 | 4 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Forecasting nonlinear time series with a hybrid methodology
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
سایر رشته های مهندسی
مکانیک محاسباتی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
In recent years, artificial neural networks (ANNs) have been used for forecasting in time series in the literature. Although it is possible to model both linear and nonlinear structures in time series by using ANNs, they are not able to handle both structures equally well. Therefore, the hybrid methodology combining ARIMA and ANN models have been used in the literature. In this study, a new hybrid approach combining Elman’s Recurrent Neural Networks (ERNN) and ARIMA models is proposed. The proposed hybrid approach is applied to Canadian Lynx data and it is found that the proposed approach has the best forecasting accuracy.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Applied Mathematics Letters - Volume 22, Issue 9, September 2009, Pages 1467–1470
Journal: Applied Mathematics Letters - Volume 22, Issue 9, September 2009, Pages 1467–1470
نویسندگان
Cagdas Hakan Aladag, Erol Egrioglu, Cem Kadilar,