کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1709271 1012846 2009 4 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Forecasting nonlinear time series with a hybrid methodology
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مکانیک محاسباتی
پیش نمایش صفحه اول مقاله
Forecasting nonlinear time series with a hybrid methodology
چکیده انگلیسی

In recent years, artificial neural networks (ANNs) have been used for forecasting in time series in the literature. Although it is possible to model both linear and nonlinear structures in time series by using ANNs, they are not able to handle both structures equally well. Therefore, the hybrid methodology combining ARIMA and ANN models have been used in the literature. In this study, a new hybrid approach combining Elman’s Recurrent Neural Networks (ERNN) and ARIMA models is proposed. The proposed hybrid approach is applied to Canadian Lynx data and it is found that the proposed approach has the best forecasting accuracy.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Applied Mathematics Letters - Volume 22, Issue 9, September 2009, Pages 1467–1470
نویسندگان
, , ,