کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1709639 | 1012859 | 2010 | 5 صفحه PDF | دانلود رایگان |
The specific force equation has many applications in open channel flow problems. Quantifying of the hydraulic jump phenomenon is an important application of this equation. This equation has a direct solution only for the rectangular channels. The trial and error procedure as well as the graphical solution are the existing methods of solving hydraulic jump equations. No direct solutions are available in technical literature for sequent depth ratios in horizontal triangular channels because it is presumed that the governing equation is a quintic equation. In the present study, considering physical concepts this quintic equation has been reduced to a quartic equation. In the next step, this quartic equation has been converted to a resolvent cubic equation and two quadratic equations. This research shows these steps clearly to reach an acceptable physical analytic solution for sequent depth ratios in horizontal triangular channels.
Journal: Applied Mathematics Letters - Volume 23, Issue 9, September 2010, Pages 1104–1108